带你从 0 到 1 搭建工业级推荐系统
深度学习推荐系统的经典技术架构
Spark、TensorFlow、Flink 等主流工具的实践经验
Embedding 和多种深度推荐模型的原理和实现
亲手搭建一个完整的深度学习推荐系统

课程模块设计

整个课程的结构遵循经典推荐系统的框架,共分为 6 个模块,分别是“基础架构篇”“特征工程篇”“线上服务篇”“推荐模型篇”“效果评估篇”“前沿拓展篇”。

基础架构篇:从宏观上,帮你建立起深度学习推荐系统的完整知识架构,做到“心中有高楼,并且手把手教你在自己的电脑上安装我们要实现的推荐系统 Sparrow RecSys ,建立初步的全局印象。

特征工程篇:重点讨论推荐系统会用到的特征,以及主要的特征处理方式,并在 Spark 上进行实践。此外,你还会学习到深度学习中非常流行的 Embedding、Graph Embedding 技术,并利用它们实现 Sparrow Recsys 中的相似电影推荐功能,在实践中快速成长。

线上服务篇:这一篇,你会实打实地搭建一个推荐服务器,它包括了服务器、存储、缓存、模型服务等模块和相关知识。通过这部分的学习,你会初步掌握 Jetty Server、Spark、Redis 等业界主流工具的使用,以及一个推荐工程师在工程领域的核心技能。

推荐模型篇:推荐模型是深度学习对传统推荐系统改进最大的地方,可以说是“推荐系统上的明珠”,也是整个专栏的重中之重。从中,你不仅可以学到 Embedding+MLP 、Wide&Deep、PNN 等深度学习模型的架构和 TensorFlow 实现,还能接触到注意力机制、序列模型、增强学习这些相关领域的前沿知识,拓宽技术视野。

效果评估篇:重点讲解效果评估的主要方法和指标,帮助你建立起包括线下评估、线上 AB 测试、评估反馈闭环的整套评估体系,真正能够用业界的方法而不是实验室的指标来评价一个推荐系统。

前沿拓展篇:围绕 YouTube、阿里巴巴、微软、Pinterest 等一线公司的深度学习推荐系统方案进行讲解,帮助你追踪业界发展的最新趋势,能融汇贯通地串联起整个知识体系。

〖课程截图〗:

深度学习推荐系统实战
深度学习推荐系统实战

本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。

最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。

对于会员专享、整站源码、程序插件、网站模板、网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。

如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理

源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源